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Abstract—The problem of state estimation for unobservable
distribution systems is considered. A Bayesian approach is
proposed that combines Bayesian inference with deep learn-
ing neural network to achieve the minimum mean squared
error estimation of network states for real-time applications.
The proposed technique learns probability distributions of net
injection from smart meter data and generate samples for
training a deep neural network. Results show that the proposed
technique offers significant improvement in estimation accuracy
and computation cost over weighted least squares methods with
pseudo-measurements. Simulations are also used to evaluate
robustness of the proposed Bayesian method against estimation
errors in distribution learning and bad data.

Index Terms—Distribution system state estimation, Bayesian
inference, deep learning neural networks, smart distribution
systems.

I. INTRODUCTION

We consider the problem of state estimation for distribution
systems that have limited measurements such that they are
unobservable [1f]. The states of such a system cannot be
determined uniquely from the available measurements even
when there is no measurement noise, and techniques such as
the weighted least squared (WLS) method [1] fail in general. A
standard remedy is to use the so-called pseudo-measurements
based on interpolated measurements or historical data. Such
techniques are ad hoc and in general suboptimal.

The present distribution systems are not well metered and
in general unobservable. However, there have been compelling
cases made for distribution system state estimation due to
the rising presence of distributed energy resources (DER) in
distribution systems [2]. To unlock the full potential of DER,
a modernization of the distribution system is necessary to
provide tighter control of power flow in real-time operations,
which requires effective state estimation.

An essential barrier to state estimation for real-time control
is unobservability. Although smart meters at the edge of
the network have been deployed progressively, these type of
measurements are typically at a much slower time scale in-
compatible with the more rapid changes of DER such as solar
generations. Realizing state estimation for real-time operation
in distribution systems, therefore, requires a fundamentally
different approach from that used in transmission systems —
one that overcomes the difficulty of lack of measurements.
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A. Summary of results and contributions

The main contribution of this work is a novel application
of Bayesian estimation, probability distribution learning, and
deep neural network learning techniques. We demonstrate the
potential of such techniques for large distribution systems and
provide insights into the architectural characteristics of deep
neural networks.

Bayesian inference is based on the probabilistic modeling
of system states. Given the highly stochastic nature of DER,
modeling voltage phasors as random variables is natural.
The key challenges of developing Bayesian state estimation,
however, are (i) the need to learning the underlying probability
distributions that define the system states and measurements;
(ii) the complexity of computing conditional mean of the
system states.

The main idea of the proposed technique, as illustrated in a
schematic diagram in Fig. |1} is that historial measurements are
used to learn the probability distributions of the net-injection.
The learned distributions are used to generate samples to
train a deep neural network to approximate the minimum
mean squared error (MMSE) estimator of the system states.
A stochastic gradient descent algorithm with early stopping
is used in the training process. In real-time applications, the
neural network directly computes the MMSE estimates with
linear complexity of O(NN') where N is the size of the network.
In contrast, WLS types of state estimator has the complexity
roughly of the order of O(N?) per iteration.
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Fig. 1: Block diagram of the method.

Numerical results demonstrate several interesting features
of the proposed approach. First, deep learning seems to be
essential. Whereas existing neural network state estimation
techniques typically use a flat network involving one or two



layers, our results show that, for the tested 85 and 141 bus
networks, a neural network of 10 layers or more can provide
accurate estimates, achieving mean squared error (MSE) per
bus at the level of 107 to 107% p.u. on test data sets. Such
estimation errors are well within the typically required accu-
racy for voltage estimates. In contrast, the WLS methods with
pseudo-measurements techniques using pseudo-measurements
have errors several orders of magnitude higher.

Second, among various training techniques, the stochastic
gradient decent algorithm with early stopping are effective
for the cases tested. Finally, simulation results show that the
proposed approach exhibits a promising level of robustness
against estimation errors in probability distributions and sam-
pling errors in training.

B. Related Work

State estimation based on deterministic models of states
has been extensively studied. See [[1]] and references therein.
Existing Bayesian techniques that model states as random are
less common even though the idea was already proposed in
the seminal work of Schweppe [3] where (extended) Kalman
filtering techniques were proposed.

In the context of state estimation for unobservable distri-
bution systems, Bayesian methods for state estimation can be
classified into two categories: Bayesian pseudo-measurements
[4]-17] and Bayesian state estimation [8|]-[17]; the former uses
probability distributions to generate pseudo-measurements so
that conventional (point) estimation techniques such as WLS
can be applied. Such a hybrid techniques are suboptimal but
can be easily incorporated in the conventional state estima-
tion methods. The latter type uses distribution information
explicitly and aims to minimize the mean squared error. These
techniques vary in how the conditional mean of the system
states are computed. The method proposed in this paper falls
into this latter category.

Direct Bayesian state estimation requires the computation of
conditional mean of the state variables. One approach is based
on a graphical model of the distribution system from which be-
lief propagation techniques are used to generate state estimates
[8[I, [9]. These techniques require a dependency graph of the
system states and explicit forms of probability distributions.
Another approach is based on a linear approximation of the
AC power flow [[10]. The proposed approach belongs to the
class of Monte Carlo techniques where samples are generated
and empirical conditional means are computed. The main
difference between our approach and existing techniques [11]]-
[13] is the way conditional means are computed in real-
time. Instead of using Monte carlo sampling to compute
the conditional mean directly as in [11]]-[13]], Monte carlo
sampling is used to train a neural network that, in real-time,
computes the MMSE estimate directly from the measurements.

Neural networks have been proposed for state estimation
as early as [[14]]. Different architectures of neural networks
have been considered: parallel distributed processing in [[15]],
auto-encoder in [[16]]. Although not casted as a Bayesian
state estimation, the approach in [[17] appears to be quite

close to ours. In [17]], a multilayer neural network is used
to estimate states directly using load bus measurements as
the input of the neural network. The distributions of power
injections are assumed. In our approach, the distribution of
net injections are learned from smart meter measurements and
more sophisticated deep learning techniques and a deep neural
network architecture are used.

II. NETWORK AND MEASUREMENT MODELS

We assume an unbalanced three phase distribution system.
The three-phase voltage phasors at bus ¢ is a complex column
vector r; = [xl x?,23]T where the superscripts are phase
indices and z¥ = Vfi&f where V/* is the voltage magnitude
and 0% is the phase angle for the state variable at phase k
of bus i. The overall system state x = [x1,--- ,xn]|T is the
column vector consisting of voltage phasors at all buses.

The vector of measurements z is a function of the state x,
and measurement error e modeled by

z=h(z)+e, S=g(z) (1)

where h(z) is the measurement equation, S the vector of power
injections, and g(x) the power flow equation. When the system
is unobservable, each measurement (even when e¢ = 0) is
associated with a manifold of states.

Different configurations of measurements can be assumed.
The measurement vectors may include some but insufficient
number of the following variables, for each phase k €

{1, 2, 3},
(Pk Qk ) :  Active/reactive power injection at node 4;
(Pl’;7 ) :  Active/reactive power flow from node i to j;

Other measurements such as current magnitudes and accumu-
lative power from smart meters can also be included.

Power flow equations are used to relate the state variables
with the measurements:

Vk Z Z V le cos( Hk 9§)+ijl sin(@f—eé')] (2)
=1 j5=1
= vk Z Z VHGY sin(0) —0%)+ BY cos(6; —05)] (3)

=1 j=1

where G} and B}/ are the conductance and susceptance
between node i and j from phase k to [. The LHS defines the
three-phase net complex power injection S; at node ¢ whose
elements are SF = PF + jQF. In absence of measurement
noise, given the set of active and reactive power injections,
the above equation can be solved to obtain the system states,
which in turn give the branch power and current flows.

III. BAYESIAN SOLUTION VIA DEEP NEURAL NETWORK
A. Bayesian State Estimation

Bayesian state estimation starts with defining the probability
space that specifies the joint distribution of the measurement
z and state x. For a distribution system with stochastic
injections, the probability space is defined by the independent
random vector S of net-injection and measurement error e.



From the power flow equations (2)-(3), S determines the
system state = (in the forms of (V,6)) , which in turn
determines measurement z. Thus the joint distribution of Fig .
specifies the joint distribution F ,.

A Bayesian estimator #(z) of x is a measurable function of
z. The MMSE estimator is given by

#(2) = argmin(|lz — i(2)] ) = E(e]2).

Unfortunately, the functional form of the MMSE estimator
is highly complex. One approach is to use a Monte Carlo
technique that, for given measurement z, compute samples
from generated conditional distribution F}.. For real-time
applications, such an approach is difficult to implement. We
propose next an alternative that approximates £* using a deep
neural network.

B. Neural Network Approximation

Fig2]shows a K layer network, where the (first) input layer
receives the input z, and the output layer produces estimates
of x.
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Fig. 2: Multi-layer Perceptron Model.

Each middle layer has a set of neurons connecting the
outputs of the neurons from the previous layer and producing
outputs for the next layer using a nonlinear function, in our
case hyperbolic tangent function. For the sth neuron in the
interior layer j, its output 2/ ™' is given by

exp(u; ;) — exp(—u; ;)

(0) (k)
g = s g s = N —|— P c.j—1,
Zi,j eXp(ui’j) =+ eXp(—Ui,j) Ui, j wl,] zk:wld Zk,j—1

where {w}; } is the set of weights associated with neuron (i, j).
For the K'th (output) layer, the output of neuron j is an affine
function of the output of the previous layer. Specifically, an
estimate of a state variable given by

0) k)
Zi, K = wz(,K + E wf,KZk,K—L
k

The outputs collectively produce an estimate of the state x.
In approximating the MMSE estimator, the neural network
weight parameter w is set to minimize the MSE of its estimate

w* :argrrgnE(Hac—lC(z;w))H%. “4)

The above optimization is only conceptual, however, because
the expectation operator requires explicit joint distribution of
z and x. We show next how w* can be obtained though a
neural network training process.

C. Bad Data Detection and Mitigation

Bad data are anomalies in data collection that are common
in transmission systems and potentially more significant in

distribution systems. Bad data detection can be implemented
using a generalized likelihood ratio test that has « as the
probability of type I (false positive) error and 3 the probability
of type II (false negative) error. When the bad data test is pos-
itive, the measurement used in the input of the neural network
should be replaced by the mean of the prior distribution. This
implies that « percentage good measurements are replaced by
the mean of the prior distribution whereas 3 percentage of the
bad data are missed, which introduces statistical deviation of
the nominal measurements. Our numerical results indicate that
Bayesian state estimates via neural networks is quite robust to
bad data.

IV. TRAINING NEURAL NETWORK
A. Learning Net Injection Distributions

In our proposed method, the first step is to estimate net
injection distribution using the historical load data. That dis-
tributions strongly depend on the days of the week, seasons
and geographical locations. We cluster the historical data with
common attributes.

We consider parametric models for net injection distri-
butions. Among commonly used models such as Gaussian,
Weibull, Gamma, etc., Gaussian mixture model appears to be
the most flexible and accurate. Indeed, Gaussian mixtures have
been used to model load distributions in [6]. From historical
data, the maximum likelihood method is used to estimate
parameters of the Gaussian mixture model. Performance of
this approach is shown in Section V.

B. Training the Neural Network

To train the neural network, we need to generate state and
measurement training samples 8 = {(z[k], z[k]) }. To this end,
we draw net-injection samples from the learned net-injection
distributions. In particular, given an injection sample S[k], the
power flow equations (2)-(3) are used to solve for system state
x[k] and measurement z[k]. Two additional sets of samples
are generated independently, § for testing performance, 8 for
validation.

To approximate the MMSE state estimator, the weight of
the neural network is chosen to minimize the empirical risk

*

w* = argmin L(w;§)

k] = K([k]; w)][* (5)

arg min i Z
v [8] ki (2 [k, 2 [k]) €S

The empirical risk minimization problem above is well
studied for deep learning problems. For the state estimation at
hand, the stochastic gradient descent algorithm [18] appears
to offer the training-generalization tradeoff. In particular, the
adaptive moment (ADAM) technique [[19] designed for nonsta-
tionary objectives and noisy measurements appear to be most
appropriate for the considered application.

A characteristics of deep learning is over-parameterization,
which means that the number of neurons (weight parameters)
tends to be comparable or smaller than the available training
samples. A key component in deep learning, therefore, is a



way to regularize the optimization of (5). Standard techniques
include L; regularization, dropout regularization [20], and
early stopping [21]]. The early stopping technique, for example,
uses the validation data set S to determine the stopping time
for the gradient descent, thus in a way to regularize the
optimization. These techniques are tested in our numerical
study.

V. SIMULATIONS RESULTS AND DISCUSSIONS
A. Network, data and benchmarks

The simulations were performed in a 85 and 141 bus
systems defined in the MATPOWER toolbox [22]]] The results
of the two systems were similar; only the results for the 85
bus system are reported here. To model the relatively high
penetration of DER, two-thirds of the buses were chosen to
have solar PV attached to the load.

Smart meters were used to measure energy consumption
of every bus with 3 types of measurement accuracy: 0.015,
0.0175 and 0.02 pu. Current magnitude meters were placed
in 20% of distribution system branches to measure the current
magnitude and a SCADA meter was placed at the slack bus to
measure complex power injection. Both with a measurement
accuracy of 0.01 pu. Smart meters had a sampling rate 30 times
slower than the SCADA and current magnitude measurements.

We used the data sets from the Pecan Street collection] for
distribution learning and testing. The data set was split into
21st May to 21st September 2015 for training and same dates
of 2016 for test, which coincided with a summer patterned net
consumption.

The proposed approach was compared with WLS methods
with two kinds of pseudo-measurements of net power injec-
tions in the literature [4], [S]] : 1) averaging the last energy con-
sumption measurement over the number of samples; ii) using a
neural networks whose inputs are the last energy consumption
vector and output the net power injection measurements for
each sample.

The performance was evaluated based on the per-node
average squared error (ASE) of state estimate using test data
set § defined as:

1
ASE = 3757 3 latH] - alil|P ©)

where M is number of cases, /N is number of nodes.

B. Learning Distributions

Gaussian Mixture Model of 3 components was selected as
the best fit for both random variables, active power consump-
tion U; and solar power generation V;, where i represents
each node. Fig 3 exemplifies the distribution fitting for training
samples of V;, where GMM of 3 components resulted to be
the best fit. On the right, it presents the variation between the
distribution learned from training samples of solar generation
and the actual test samples. An estimated distribution of the
test samples was included for clarity in the comparison.

“The 85 and 141 bus systems are single phase systems in MATPOWER.
Thttp://www.pecanstreet.org/
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Fig. 3: Distribution fitting from solar power training
samples (left) and Comparison between fitted
training distribution and test samples (right)

From these distributions we generated the training and
validation set comprised of 600 and 300 cases respectively.
Validation set is used for early stopping. We assumed a
power factor of 0.86 giving a ratio of 0.6 between active
and reactive power injections. Therefore, each element of the
net complex power injections vector S[k] was generated as
Si[k] = (ui[k] — vi[k]) + 7(0.6u;[k])where w;[k] and v;[k] are
realizations of U; and V.

C. Neural Network Architecture

The first experiment consisted of exploring what network
architectures would be more suitable for the Distribution
System State Estimation problem. Therefore, two strategies
were followed. In Fig [ the total number of neurons was fixed
and the ASE was calculated at different number of hidden
layers. Three total number of neurons were specified.
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Fig. 4: NN Architecture - Total number of neurons fixed.

The results suggest a ’deeper’ neural network architecture
performs better than another with fewer number of hidden
layers, as long as the different methods presented previously
are followed to prevent overfitting.
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D. Performance

We conducted simulation on the performance of the pro-
posed state estimation technique for each hour of the day. The
mean net consumption is presented as a reference, although it
is shown unitless to focus on the ASE magnitude. For every
hour a different neural network was trained. Fig [5] shows that
the ASE of deep neural networks was clearly better than the
first pseudo-measurements method.Comparison between the
second pseudo-measurements method shows that training deep
neural network to estimate the states directly has more efficient
than estimating pseudo-measurements.

1Wwi3er— T T T T T

P WLS w/ pseuda-measurements averaging
e WLS w7/ pseudo-measurements NN
=@— Deep Neural Network
Mean Net consumption
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Fig. 5: Hourly simulation

For testing the robustness of our method against bad data,
a generalized likelihood ratio test with o = S = 0.05 was
implemented.Bad data measurements are assumed to have five
times higher error variance than that of the uncorrupted. In the
simulation the percentage of bad data is increased in steps of
10% from 0 to 50%. The outcome of the experiment shows
that the DNN ASE stayed within 5% when the number of
bad data measurements increased, while PM methods’ ASE
increased 50% from the initial uncorrupted case. We have also
conducted comparison studies between the proposed technique
and WLS methods with increasing SCADA complex power
measurements. With additional complex power measurements,
the network became observable. As expected, the WLS tech-
nique gradually outperform the Bayesian methods. Details of
these results will be reported in separate work.

VI. CONCLUSION

This paper presents a Bayesian approach using deep neural
networks for state estimation in unobservable distribution
systems. To benefit from deep neural network architectures,
this approach learns net power injection distributions from
historical measurements and generates more training samples.
Furthermore, stochastic optimization methods and regulariza-
tion methods are used to avoid overfitting. This method is
computationally efficient and robust against bad data, variation
of net consumption distributions and high penetration of

DERs; which makes it suitable for real-time operation in the
distribution system.
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